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This paper is concerned with the numerical solution for linear scalar advection
problems, the velocity field of which may be uniform or a given function of the
space variable. We would like to propose the following: (1) a new family of 1-D
compact explicit schemes, which preserve monotonicity while maintaining high-
order accuracy in smooth regions; and (2) an extension to the 2-D case of this
family of schemes, which ensures good accuracy and isotropy of the computed
solution even for very distorted meshes. A few theoretical results are proven, while
abundant numerical tests are shown in order to illustrate the quality of the schemes at
issue. (© 2002 Elsevier Science (USA)

INTRODUCTION

The linear scalar advection equation is usually the starting point for students or rese:
scientists who work in the area of numerical schemes for hyperbolic conservation laws
the industrial context, it has a criticablg" in fluid mechanics ALE codes such as KIVA
[1, 21]. Although many properties are known about this apparently simple topic, the “p
fect” scheme for multidimensional advection remains yet to be discovered.

Letus examine the 1-D case. High-resolution upwind schemes based on nonlinear limi
for the equation

Ui +auy, =0 1)

yield excellent results and have matured into a quite robust technological standard.
reader is referred to several papers [2, 13, 37, 41] and review works [4, 16, 38]. Howe'
these schemes generally use a 5-point stencil, which makes it difficult to extend th

454

0021-9991/02 $35.00
(© 2002 Elsevier Science (USA)
All rights reserved.



COMPACT SCHEMES FOR LINEAR SCALAR ADVECTION 455

to the 2-D case. Of course, dimensional splitting could be used, and actually it is rat
popular, but this is not we are looking for. Other types of schemes have been suggeste
the 1-D advection, for instance, ENO and UNO schemes [19, 20], box schemes [6, -
discontinuous Galerkin [7], and Iserles schemes [15, 23, 31]. All of these schemes are |
order but not necessarily TVD, unless some special treatments are applied.

The situation for the 2-D case is more complex. The advection equation reads

U’[ + auX + bUy = 07 (2)

and what we are looking for is a “genuinely multidimensional scheme,” that is, a sche
(i) which does not rely on dimensional splitting and (ii) which provides isotropic errc
distributions. Such a quest is justified by the heavy use of advection steps on irreg
meshes in many industrial applications. In such contexts, one is led to the observa
that the grid’s orientation has a tremendous effect on the quality of the results. As
dimensional splitting, although it remains “the method of choice” for many practioners,
is not convenient for computations on unstructured grids.

The quest may have started when Colella [9] generalized the idea of Godunov’s sche
His scheme, called corner transport upwind (CTU), can be made second order using sl
limitation. However, it does not always ensure high accuracy when the mesh is irregu
An alternative philosophy for securing high order is advocated by Cocldiain[8, 7] via
discontinous Galerkin methods. Unfortunately, these methods turn out to be very expen:
On the other hand, there exist more “compact” stencils, such as in N-schemes [30, 3¢
in residual distribution schemes [11, 12, 28]. Nevertheless, all of these schemes have |
mostly designed for the steady-state case and so are only of first order for evolution proble

In this paper, we wish to indicate how 1-D Iserles schemes [23, 31] can be modifiec
become monotonicity-preserving. Then, we derive a new way of extending these corre
Iserles schemes to the 2-D case. The final product is a family of nonlinear compact sten
which leads to very satisfactory results for linear advection problems over space-depen
velocity fields.

1. THE 1-D CASE

1.1. Uniform Velocity

Let us consider Eq. (1) in which the velocays assumed to be positive and uniform. The
initial condition isu(t = 0; X) = ug(X). The domairR is divided into intervals of length
AX. First, we concentrate on two Iserles schemes, namely,

(I uH =t - 20 (- uf) ®
a-shyd-2»

(12) ulff=ur? 42— 30Ul —u ) + T

(' —ul). @
with A = aAt/Ax. Fourier analysis [31] shows that: (i) scherfiel) is second order and
is stable for O< A < 1; (ii) scheme(12) is fourth order and is stable for8 1 < % The
schemegI1) and (I2) are known to belissipation-freeThe price to be paid for such a
property is a huge amount dfspersion

There is a nice and useful way of interpreting formulae (3) and (4). Iri;thB-plane

of Fig. 1, let us draw the characteristic lin€gj, m) associated with thetencil points
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FIG. 1. Iserles stencils.

O = (j,m), wherej € {i,i + 1} is a space-like indexantt € {(n—2,n—1,n,n+ 1} is

a time-like index. The intersection of these characteristic lines and the axisAt are
denoted byx = X(j, m). The x’s are referred to asharacteristic pointswhether or not
they coincide with some stencil points. Of counsés constant along any characteristic line.
A special symbok is attributed taX (i + 1, n + 1), referred to aspot since(i + 1, n + 1)

is the point to be computed. Then, the valueuddt the spotx can be proven to be the
outcome of a polynomial interpolation process from the data available at the characteri
pointsx. The interpolation is quadratic f@i and quartic fod 2. Insofar as the interpolation
process does not respect the maximum principle, we can hence understand the orig
dispersion.

Screening out the oscillations is attempted by forcing the new valuatthe spot not to
exceed those at the characteristic poitthat are “closest” to the spat For instance, in
Fig. 1, the characteristic points that “enclose” the spate: X(i,n — 1) and X( + 1, n)
for the left scheme&I1), andX(i,n — 2) and X (i + 1, n) for the right schem&12). To
better explain how the schemes can be made monotonicity-preserving, let us introduce s
more notations.

For two real numbers andw, regardless of whether < w or v > w, we designate by
|v, w| the closed interval [mitv, w), max(v, w)]. Thus,|v, w| = |w, v|. If u € R, we call
I, (u) the projectionof u onto|v, w|, namely,

min(v, w) if U < min(v, w)
MU =< U if ue v, w| (5)
max(v, w) if u > maxv, w).

Intuitively, we can understand the meaningldfby mentally representing a continuous
functionx — u(x). As shown in Fig. 2, if some value of u happens to lie outside interval
lv, w|, we just have to “pull it back.” Such a simple-minded limitation is motivated by ou
desire to avoid creating any new local extremum. In practice, we proceed in two stac
first, we apply the original Iserles formulae to update the grid point, and next, we resor
the projection.
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FIG. 2. The idea of projection.

The heart of the matter is to decide on tirénterval over which projection must be
carried out right on. This-interval is|u(X,), u(X;)|, where [X;, X;] is thebounding box
that encloses the spst In the upcoming figures, the bounding bok [ X;] is represented
by the rectangl. Although the formulae may look exceedingly complicated, the
underlying idea is very simple: always search for the characteristic lines which are clos
to the spot. This search, of course, will depend on the Courant number

More precisely, the projection process is described as follows:

e For (I1), as depicted in Fig. 3,

W { Myt (1) ffo <i<3 @ ©
My (Uf) i3 <i<1 ().
If » = %, no projection is required, sineg/{ = u'"* according to (3).
e For (12), as depicted in Fig. 4,
UL = { H\ui”‘?uitll(uinill) ifO <i<3 @ @
M2 (Ui7) fg<i<i (D).

Fori = % no projection is required, sincu?jll = u? according to (4).

? 141 t 141
n+1 n+1
n n
n—1 n—1

0<A<

B -

l<ax<l

FIG. 3. Choice of the bounding box fart.
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FIG. 4. Choice of the bounding box far2.

The combination of the original schemés1) and (I2) and the projection process
(6) and (7) gives pretty good results, as will be shown in the next section. Unfortunate
their quality worsens as gets closer to 0. The following observation accounts for thi
phenomenon, mainly due to the interpolation process. In Fig. 5, it is easy to check that

eoif A < % then the characteristic poirt = X(i + 1, n — 1) is closer to the spot =
X({ +1,n+1 thanY = X(i, n);

eoif A < %, then the characteristic poirt = X(i + 1, n — 2) is closer to the spot =
X +1,n+1 thanY = X(i,n).

Henceforth, when < % it is more “interesting” to get> = X(i + 1, n — 1) involved in
the (I1) stencil. Thus, to retain an accurate quadratic interpolaos, X (i, n) has to be
left out. The rationale for this switch in the stencil is to always make use of the “close:s
points to the target for interpolating. The corresponding formula is

22 . 21-2% _
it = muin 1t ﬁu{‘+1 —(1-20u. (8)
i 141 i t+1
n+1 n+1
n n
n—1 n—1
n—2
I1 I2
A< 3 A<i

FIG. 5. Modified Iserles schemes for small
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Similarly, wheni < ;11, itis more “accurate” to gep = X(i + 1, n — 2) involved in the
(I2) stencil. Again, to keep an accurate quartic interpolation, the poiatX(i, n) has to
be taken out, as has been previously explained and will be evidenced by numerical t
Thus,

6.2(1—3)) 4 62 -2 31-3n ,

- i i

n+l _

R T
31-3y1-22) ., Q—-20)A-3) .
B T E i v e ©)

In summary, we propose two corrected schemes,

(I1C) = {interpolation (3) or (8)+ {projection (6)
(12C) = {interpolation (4) or (9)+ {projection (7),

where the interpolation formula depends on the valug a$ indicated above. Far= %
in (I1C) andA = 711 in (I2C), we keep the original stencils, i.e., (3) and (4). Although the
switch from (3) to (8) and from (4) to (9) is, in principléiscontinuousvith respect ta., the
numerical results prove to be very acceptable. In what follows, (8) and (9) will be term
proximity correctionfor the Iserles schemes. It is interesting to note—and easy to pro
(see Appendix A)—that both scheméB1C) and (I2C) aremonotonicity-preserving

To our knowledges, such ideas about (i) projection and (ii) modification of the Iserl
schemes have never been put forward. We shall see that these ideas are easily exter
to the 2-D case.

1.2. Variable Velocity

It is relatively straightforward to upgrade the previous schemes to the case of a vari
velocity fielda(x). However, some basic hypothesesaonill be needed:

(HO) The velocity fielda is continuouswith respect tax. This hypothesis is necessary
for existence and uniqueness of the advection problem.

(H1) The values o& are discretized at the nodesf the grid.

(H2) Every, if any,sourcepoint ofu, i.e., every abscissafor which u(s) = 0 together
with a(s — €) < 0 anda(s + ¢) > 0 for small enougl > 0, must coincide with a node.

Hypothesis (H2) may sound a little too constraining, but the physical explanation is tl
additional data om are required at any source point.

We are now in a position to describe our strategy for the variable velocity cage- 10
anda; .1 > 0, we define an average velocity

1
a:=aj 2= E(ai +a41), (10)

and apply(I1C) or (I2C) with A = aAt/AXx, along with the appropriate projection step,
over the intervalif, i + 1] in order to computel{‘jll. If & < 0anda_.; < 0, we exchange
i andi + 1 in the formulae (to take into account the direction of propagation) in order

computeu™.
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(a) (6)

FIG. 6. The two types of sonic points for a continuous velocity field.

It could be thought that for a variable velocity field, more accuracy would be achiev
via an affine representation af The characteristic curved j, m) are no longer straight
lines. Hence, the position of characteristic poiKtg, m) must be determined with a more
sophisticated procedure before any interpolation process is carried out. We will see fi
numerical results that the gain in quality is not worth the extra price to be paid.

Furthermore, special attention must be devoted to the treatment of sonic nodes, i.e.,
nodei whereg; = 0. Sincea; = 0, the linex = i Ax is a characteristic curve. Additionally,
since the velocity field is assumed to be continuous, the other charactistic curves in t
neighborhood of do not cross the ling = i Ax. Let us distinguish two cases:

o If the sonic poini is a source (Fig. 6a), the valuet™* must beimposed as data of
the problem. Then, we comp jll by using(I1C) or (I2C) with positive velocity over
[i,i +1], andui”jfll by using the negative-velocity version of the scheme overl,i].

e If the sonic pointi is asink (Fig. 6b), we naturally havcali”+l = u'. The value of
UPIll is updated by a modified Iserles scheme with negative velocity overl]i + 2],
whereas the value in“fll is updated by a modified Iserles scheme with positive velocit

overfi —2,i —1].

In both cases, the formulae are used with the average velocity over the interval at is:
Note that, in this paper, only space-dependency isfconsidered. The case of a velocity
field a(x, t) which depends on space and time is currently under study.

1.3. Numerical Results

Let us start with a uniform velocity field = 1. The discontinuous dasUARE, defined
by

1 ifo5<x<1
Uo() = {O otherwise (11)

is advected during a lapse of tirfie= 3. The numerical solution, diplayed fare [3, 4.5],

is compared to the analytical solution, as well as to a humerical solution computed b
classical MUSCL scheme [41] with the Ultrabee limitation procedure [13]. We recall th
Ultrabee makes use of the actual valugf the CFL ratio. Therefore, it is more compressive

1Although this may not be always possible in a “real-life” computation.
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FIG. 7. Advection ofSQUARE for largeA, without proximity correction.

than Superbee. For the runs in Figs. 7-9, the mesh spacing is 0.025. The first time
step is always performed with a standard upwind scheme using no reconstruction. As
the second time step, it is always performed Wit c).

In Fig. 7, we can see the results corresponding to four different valugs rainging
from 0.2 to 0.5. Projections (6) and (7) are of course applied, but for the moment, ther
no proximity correction introduced in (8) and (9). The shape of the solution obtained w
(I1) is unsymmetric and, anyway, too diffusive. Obviously, di1lg) is able to compete
with MUSCL. Note that forr = 0.5, the two Iserles schemes are exact.

In Fig. 8, the results are associated to smaller values, odnging from 0.05 to 0.3.
Although no new local extremum does appear, there is a staircase effect which looks
aesthetical.” If the proximity correction is turned on, the results are much better as show
Fig. 9, especially fo(I2C) . This testifies, at least numerically, to the fact that the proximity
correction is a necessary step within the whole scheme. This correction will have a fur
mental role in variable velocity simulations, where the local CFL may be very close to (

Let us quantify the orders of convergence by performing a logarithmic least-squa
regression on the relativiel-errors, computed as functions of the mesh spading= h
ranging througH0.05, 0.025, 0.0125, 0.006R5-or this convergence study, in addition to
the SQUARE data, we use two other types of initial data, namely,

e AWAVELET

f05<x<1
otherwise

Uo(X) = { gos’-[Zn(x —0.79)]

which isC!-smooth (but no€?) and has a peak at= 0.75; and

(12)
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e aHYPETAN (standing for HYPErbolic TANgent)

0.5{1+ tanh gos 2 To7sr] | 105 <x <1
Uo(X) =<0 if x <05 (13)
1 otherwise

which isC*-smooth. Moreover, it is a monotone-increasing function.

In Fig. 10 and Table I, the word “MUSCL” designates the standard second-order upw
scheme, the limitor being either Ultrabee (8QUARE) or Van Leer (forWAVELET and
HYPETAN). At the right of each entry in Table I, the number in the parentheses correspol
to the limitation-free high-order version of the schemes, i.e., the “LW” (Lax—Wendrof

SQUARE
5E-01
i 1E-01
E 5E-02]
- 0.95
0.7
1E-02-
CFL=04
5€-03 T T T T T
6E-03 8E-03 1E-02 2E-02 4E-02 6E-02
h
WAVELET
1E+00
1E-01-
& 1E-02
5 1.8
= 1E-03
1E-04
2.31
1E-05 T T T T T
6E-03 8E-03 1E-02 2E-02 4E-02 6E-02
h
HYPETAN
1802 /W/ﬂ
5 'F%71.70
§
~ 4e-06-
—a— MUSCL
3.59 —e— 12C
1E-08 T T T T T
6E-03 8E-03 1E-02 2E-02 4E-02 6E-02
h

FIG. 10. Convergence of MUSCL and I2C schemes on a logarithmic scale for a 1-D advection experimer
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TABLE |
Orders of Convergence for the 1-D Translation Experiment

SQUARE WAVELET HYPETAN
CFL  MUSCL (LW) 12C (12) MUSCL (LW) 12C (12) MUSCL (LW) 12C (12)
0.8 0.90 (0.74) N.A. 1.79 (1.73) N.A. 1.83 (1.87) N.A.
0.5 0.96 (0.68) N.A. 1.89 (1.66) N.A. 1.76 (1.80) N.A.
0.4 0.95 (0.67) 0.78 (0.50) 1.84 (1.66) 2.31(2.35) 1.70 (1.79) 3.59 (3.72
0.2 0.95 (0.64) 0.76 (0.47) 1.69 (1.67) 2.40 (2.24) 1.45 (1.75) 3.16 (3.36
0.1 0.94 (0.65) 0.77 (0.42) 1.60 (1.70) 2.38(2.23) 1.30 (1.72) 3.02 (3.17

second-order scheme and the original fourth—order “12” (Iserles). This number is suppl
simply in order to highlight the effect of the monotonizing mechanisms involved in variot
schemes. In practical applications of interest for us, LW and 12 cannot be used becaus
the spurious oscillations generated.

From Table |, we see that for the discontinuous Sgt#\RE, I2C does not achieve a faster
convergence than MUSCL. However, the smoother the initial data, the more 12C outd
MUSCL, both in terms of order of convergence and magnitude of error. The reason w
the C* datawAVELET gives rise to orders of convergence lesser than 2.5 is the presence
a local extremum. For th€> monotone increasing dat&’PETAN, 12C yields orders of
convergence close to 4.

We are now concerned with two variable velocity casegxgransioriield a(x) = x, and
acompressiofiield a(x) = —x. We have just seen th&L2C)is much better thaifI1C).
Therefore, we will concentrate of12C). In order to get a thorough insight of its behavior,
we will work with two types of initial data, namel§QUARE andWAVELET (see below). On
the other hand, we have implemented a variant callezt’ ), inwhich the velocitya is
represented by a locally affine function and the characteristic pXiftsm) are computed
accordingly.

For all the runs, the mesh spacing Ax = 0.025, while the time step\t is set so
thatimax = |@|maxAt/AX = 0.4, wherela|max = max|a(x)|. The computations were per-
formed for the three types of initial conditi®@QUARE, WAVELET, andHYPETAN. For the
sake of concision, only the results associateSQIMARE are shown in this paper.

Figure 11a displays the results for the expansion case. The initia$ GalRE,

1 if0.05<x<0.15
Uo(x) = {0 otherwise (14)
being transported over a lap$e= 3 along the characteristic curves
X(Xo: 1) = Xpexp(t) (15)

associated to the velocity fiedx) = X, has been stretched by a factor of exp320. The
display window is therefore [0, 4]. Comparison with the analytical solution and the MUSC
(Ultrabee) scheme shows that there is no visible difference bet@est) and (12C?).
The overcompressive behavior of Ultrabee can be regarded as a slight disadvantage. C
other hand, it can be noticed that, for all schemes, the numerical diffusion is much m
important invariable velocity than in uniform velocity.
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Expansion
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FIG. 11. Expansion and compression8fUARE by Iserles schemes with proximity correction.

Figure 11b exhibits the results for the compression case. The BQARE,

1 if -83<x<-1
Uo(x) = {O otherwise (16)

being transported over a lap$e= 3 along the characteristic curves
X(Xo; 1) = Xo exp(—t) a7

associated to the velocity fiell{x) = —X, has been squeezed by a factorexp) ~ 0.05.
Consequently, the display window is now(.25, 0].

2. THE 2-D CASE

For the general 2-D advection equation

Ut 4 a(x, y)ux + b(x, y)uy =0, (18)



466 TRAN AND SCHEURER

it is usual to introduce the notion @ibwlinein the x, y)-plane. A flowline is defined as
a curve whose tangent is parallel to velocity fiele: (a, b). More accurately, it is the set
L(So; Xo, Yo) Of points(x(s), y(s)), parameterized by, that are solution of the differential
system

(o}
X
<8}
Q.
2R
olT

(19)

along with the Cauchy conditionqgsy) = %o andy(sy) = Yo. Here, the normalizing factor
c=|c| =+vaz+Db? (20)

is designed to makethe Euclidean curvilinear coordinate. One shall not confuse a flowlin
with a bicharacteristic curvewhich is defined in the spacg,(y, t) as the se€ (to; Xo, Yo)

of points(x(t), y(t), t) such as its projection on th&,(y)-plane coincide with the flowline
L(to, Xo, Yo)-

Let o be orthogonal coordinate associatedtbe , y)-plane, as depicted in Fig. 12.
Intuitively, o is a continuous “tag” that allows us to identify each of the flowlines in the
(X, y)-plane by an equation such@s= constant. If the mapping, y) < (o, t) isalocal
diffeomorphism, then the coupls, (@) can be considered as a coordinate system, at lea
locally, and we have

auy + buy = (as, + bsy)us + (aoyx + boy)u,. (22)
This equality involves partial derivatives of the new coordinases ) with respect to the
old coordinatesy, y). Notice, however, thado, + boy = C(oxXs + oyYs) is a multiple of
the derivative ofr along a flowline. Since remains constant along a flowline, we have

aoy + boy = 0, which cancels out the second term on the right-hand side of (21). As f
the remaining term, we hawes, 4+ bs, = c(XsSx + YsSy) = €S = ¢, after (19).

o = constant

s = constant

FIG. 12. Local coordinatesy o).
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The advection equation (18) can finally be expressed as
Ut +c(S,0)us =0, (22)

whereu is to be thought of as a function df §, o). Thus, we are somehow brought back to
the 1-D case. The main idea is therefore to apply the previously modified Iserles sche
along the flowline. Below are the details.

2.1. Uniform Velocity

For sake of simplicity, let us first work with a uniform velocity field. The flowlines are
therefore straight lines. To further simplify the presentation, we assume that we are endo
with a structured mesh, but this hypothesis does not restrict the validity of the method
Fig. 13, {, j) is the node to be updated. Let us draw the flowlthgoing throughi(, j)
and let us suppose thdl passes through the quadrilateral with nodeg) (i — 1, j),
(i—1,j—1),and {, j —1). The cell which contains the backward flowline from node
(i, j) is referred to as thmfluence cell

Let R be the union of the two edges that do not contain), and define

pi,j)=LNR (23)

to be theparentof (i, j). We wish to apply the modified Iserles schefi2C) between
p@, j) and(, j). Of course, ifp(i, j) happens to be one of the existing nodes, for instanc
(i —1,j — 1) asin Fig. 13a, there is no problem at all. The problem arises vgiierj)

is in a “general” position, as in Fig. 13b: how can we attribute a value fiorthe parent
point?

Unsurprisingly, the answer is interpolation. At first sight, it seems natural to try a line
interpolation to assesk j, fromu;_1 ;1 andu; j_,. However, as will be shown later, the
results are hopelessly bad. We need higher order interpolation, while avoiding the us
neighboring nodes, which would destroy the compacity of the scheme. The solution to s
a dilemma is to add extra unknowns defineddditional pointsover each edge.

InFig. 14a, we add one additional point per edge, which ensures a quadratic interpola
In Fig. 14b, we add two additional points by edge, which yields a cubic interpolation. .
these extra points, the value ofu has to be stored and updated in the same way as tl

(i, J) ()

(i—1,j—1) g C=Li=U pGi) o1

FIG. 13. Basic idea of 2-D Iserles schemes.
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(4, 7) N CF))

(i=1,j-1) i, 7) b (-Li=-1 a4 (i,5—1)

FIG. 14. Additional points for interpolation.

value ofu at a node: each point has a parent point, and we need to apfigC) between
the parent and the point to be updated.

Note that the words “quadratic” and “cubic” describe the 1-D interpolation along tt
edges, but do not suggest any 2-D interpolation over the cell. Of course, the more acctL
the interpolation, the more expansive the CPU time will be, since the number of points
be updated grows quite fast. Our experience is that the quadratic interpolation, using
one auxiliary point by edge, is a very acceptable trade-off.

It could be argued that, since the additional points along edges become extra unkna
which must be updated in the same manner as the original vertex unknowns, the efec
stencil of the scheme increases and its compactness is therefore compromised. The
we wish to make is that the stencil remains compact in space, insofar as the stencil pc
all belong to the same cell. Of course, their number has increased in a manner not ur
the larger stencils used by ENO or other reconstruction schemes. But compactness
respect to space remains the key advantage: it makes it easier for us to work out high-c
approximation formulae, regardless of how much distorted the mesh may be (ENO or of
reconstruction schemes are uneasy to deal with over irregular meshes).

To help practitioners who would like to implement the full scheme, below are the inte
polation formulae. Let us map the edge to interva%[ %]. The midpoint of the edge is then
0, while the third and two-third points are-af; and;. Leta € [—3, 3] be thenormalized
abscissaof a parent point.

e For linear interpolation, we are given.,» anduy,,. Then,
Uy A %(1 — 20)U_1/2 + %(1 + 2a)uy 2. (24)
e For quadratic interpolation, we are givany,, Ug, anduy . Then,
Uy ~ —a(1— 20)U_1/2 + (1 — da®)Ug + a(1 + 200)uy 2. (25)
¢ For cubic interpolation, we are given.i/», U_1/6, U1/6, anduy . Then,

1 9
o~ — 7o (L= 20)(1 - 360?)u_1/2 + 61 40®)(1 — Ba)U_1/6

9 1
+ 751 — 4L+ 6)uye — T (1+20)(1 — 360%)uy . (26)
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Once interpolation is done, @rojection stephas to be followed, in order to preserve
monotonicity? Analogously to the projection in the Iserles scheme, the newly computs
value ofu has to be “controlled” by the values aofat the closest points. For example, in
the case of Fig. 14a, we have to assign

Upi.j) = H‘Ui—l/z,j—laui,j—ﬂ (up(i,i)) ’ (27)

where(i —1/2, j — 1) denotes the extra point on the edge contairpiig j). In the case
of Fig. 14b, it is appropriate to request

Upd,j) = H‘Ui—1/3,j—lvui,j—l| (up(i,i)> ’ (28)

where(i —2/3, j — 1) and(i — 1/3, j — 1) are the extra points.

Figure 15 is a 3-D sketch that summarizes the whole idea of the scheme. Once inte
lation and projection steps are completed, the vaﬁé is obtained by using the Iserles
scheme with proximity correction in the plaie

2.2. Variable Velocity

As in the 1-D case, we first require thak, y) is continuous. Furthermore, we need to
assume

(H3) The (vector) values af are given at the vertices, (j) of the mesh.

(H4) Every, if anysourcepoint ofc, i.e., every postiony, y) for whichc(x, y) = 0, and
pnaX +eu, y + ev) + vb(x + eu, y + €v) > 0 for all unit vectorn = («, v) and for all
€ > 0 small enough, coincide with a vertex.

For the same reasons explained in the previous section, the evolutiaat afsource point
has to be given as part of the data of the problem. édmicpoint [c(x, y) = 0] that is not
a source, we are justified in writing"** = u".

Let us now explain how to updategenericpoint, i.e., either a grid point or an extra
point. We proceed in four stages:

1. Determine the influence cell of the point to be updated. Once this is found, comp
the average velocity over the cell.

2. Determine the parent of the point to be updated, using the average velocity to app
imate the flowline by a straight line.

3. Determine the value af at the parent point by interpolation and projection, as ex
plained above.

4. Apply the 1-D Iserles scheme between the point to be updated and its parent.

Sincec does not depend dnsteps 1 and 2 can be done once and for all before entering t
time loop.

2.3. Reference Schemes

Our objective is to compare the new method to the second-order versions of: (i) the Da
scheme, based on 1-D approximation of fluxes across edges; and (ii) Colella’s CTU sch
that we extended to the case of irregular meshes. Let us briefly recall these two scherr

2 Except for linear interpolation.
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n+1
n
n—1
n—2

Plane P is defined by bicharacteristic curve C

i and flowline £. Here, ufjl (®) is computed
nn—1n-2 n,n—1n-2
: from u;; (o) and Uyli ) (O)

FIG. 15. Modified Iserles scheme in 2-D with quadratic interpolation.
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Always for the sake of simplicity, we present them for structured grids. In both Don
and CTU methods, the unknowns; are located at the centers of the cells. Consider th
guadrilateral cell

Qi.j = {Ni—12j-12. Niz12j-1/2. Nit1/2j+1/2, Nic1j2.j+1/2} (29)

at the mass-centés; ; of whichu; ; is defined. OveK; j, u is seen as an affine function
of (x, ), i.e.,

Ui (G Y) =Uij+ Pij(X=Xe,,) +a.j(Y—Yo,)- (30)
The way the gradienty j, ¢ ;) is constructed and limited in order to achieve second-orde
accuracy, while preserving monotonicity, will be explained later. The average value o
over Q; j is exactlyu; ;.
First, we put the advection equation (18) in ttenservativdorm, which yields

Uy + (@ux + (bu)y = (ax + by)u. (31)

By the principle of finite-volume methods, we have

1 At
untl — yn — / d f u (¢, t)c) -n(e) de
) AL Jo ‘ 0Qi; (- e n©
1 At
+ d / udivcdx dy, 32
-A(QIJ)/O f Qij ¥ ( )

where A denotes the area, the boundaryn the outward normal unit vector,the dot
product, andi* the “physical” solution along the edge, shifted in time. Si6iGg j consists
of four edges, we write

Nit1/2,j+1/2 Ni_1/2,j11/2 Ni—1/2,j-1/2 Nit1/2,j-1/2
j{ =/ _|_/ _|_/ _|_/ (33)
Qi Nit1/2j-1/2 Nit1/2.j+1/2 Ni—1/2j-1/2 Ni—1/2.j-1/2
The Donor and CTU schemes differ in how the elementary integrals on the right-hand ¢
are approximated.

2.3.1. Donor

In the Donor method, there is one velocityor each edge. Thus, we have, for instance

Nit1/2.j+1/2

Nit1/2.j+1/2
/ u*(€, )[c-n] () df = (Gt -ﬂi+1/2,j)/ ut(e, ryde.  (34)
N

i+1/2,j-1/2 Nit1/2,j-1/2

Introduce the “apparent” velocity ;1,2 j = Gi+1/2,j - Ni+1/2,j. Then, the “flux” termu*
is evaluated as

ul (Mg — tvig1/2,iNig1/2,] if viy1/2j =0
u*(ﬂ,t)={ i i) o (35)

uleg i (Me = tvigay2jMivayz) if vigaaj <0,
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where M, is the point whose abscissa aloNg,1/2 j—1/2Nit+1/2 j+1/2 is £. Of course, the
function uﬂj is given by (30). In a nutshell, this amounts to the consideration that locally,
the level of this edge, we have a 1-D avection problem governed by velggity ;. The
formulae for the other edges are similar. To this stage, the first term in the right-hand s
of (32) is available.

On the other hand, it is possible to assign a mean value faraler Q; ; using Green’s
formula. More precisely,

dive)j = > cernelel. (36)

1
A(Q'J) ecedges ofQ; ;
This allows us to discretize the second term in the right-hand side of (3&) {giv ¢); ju}’;
in order to obtain an explicit scheme. Note, however, that most of the velocity fields \
will be working with are divergence-free (do/= 0), so we do not have to worry about this
term.

23.2.CTU

In the CTU method, the velocity is given at the vertices of the cells. At each vertex, \
define a local Riemann problem as the advection associated to the local (constant) vel
value. LetE;j 1/, ; be the midpoint oN; 11/2 j—1/2Ni+1/2, j+1/2. Then, we can write

Nij1/2,j+1/2 Bit1/2,
/ u*(£, o)[c-n](e)de = [Ci+1/2,j—1/2'ni+l/2,j}/ u (¢, r)de
Nit1/2,j-1/2 Nit1/2,j-1/2
Nit1/2.j+1/2
+ [Cit1/2,j+1/2 Nit1/2] / u*(¢, r)yde, (37)
Eit12]

while u* is defined as

u"(M, — tg - if £ € |N; i_12E; i
e 1:):{ (M, i +1/2,j-1/2) [Nit1/2j-1/2Ei+1/2]] 38)

u" (M — tGiyap2j+12)  if € € [EivajajNijaj2jas2].

The pointM,_.c... may fall into a couple of cells around ed®&,1/2 j—1/2Nit+1/2 j+1/2.
This is why we have not written down space indices as in (38). In practice, we have to ¢
with various types of intersection between a segment and several half-lines originating fr
each vertex. Over each cdll! is an affine function as specified in (30).

Under some geometrical CFL conditions, it is possible to compute exactly the integr
involved in this method. The details are given in [39]. As for the term containing,dtv
can be coped with similarly to what was done for the Donor method.

2.3.3. Gradient Reconstruction

On non-Cartesian meshes, it is difficult to generalize 1-D slope limiters such as Van L
or Superbee. Inspired by Dukowicz and Kodis [14], we take the following approach. V
first compute a “candidate” gradiengi(j, g; ;) by solving the least-squares minimization
problem

min > Jug, — (e, + Py (Xe, — Xa,,) + i (Yo, — Yo, )" (39)
Pi,jsGij ceneighbor cells
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We may take either four or eight neighboring cells. The solution is achieved by solving
linear system.
Next, we search for the extremal values

i{j: min  ug et ul max u (40)

u G = G
ceneighbor cells °© 1] ceneigbor cells ¢

of u aroundQ; ;. Compare these to the extremal values over @gll, namely,

ij = Ug, ; + min pi,J(Xv_XGi.j) +Qi,J(yv_yGi.j)

vevertices ofQ;

u

N (41)
W =Ue, +  max P (% = Xe,) G (Yo — Ve
in order to define the ratios
4 1
u'. —u u . —u
o) = max(O, '_'G"> and o = max<0, 'JFJG") (42)
! ul] - UGIJ ’ UI,J - UG”
Now, set
0i,j = min(l, UiJfJ- 207 1) (43)
then change the candidate gradient as
p.j=oijp,j and ¢ :=o0iG. (44)

This limitation procedure prevents new extremal values fsbm arising.

2.4. Numerical Results

Extensive numerical simulations have been carried out [39, 40] in order to test our mett
In this paper, we present six of them: two for a regular Cartesian mesh and four for t
deformed meshes. The initial data that will be used throughout the rest of the section
the 2-D Cartesian products of their 1-D counterp8QI$ARE, WAVELET, andHYPETAN. The
first two of them are compact-supported and their initial support is denotetl Ag for
HYPETAN, it is not compact-supported, and its relevancy may be questionable in view
practical applications. However, it is interesting to know whether or not this kind of da
still gives rise to a very high order of convergence. In most simulations, for the sake
concision, we show the results correspondin@QUARE alone. Unless otherwise stated,
the comments foRAVELET andHYPETAN are similar.

2.4.1. Regular Meshes
Uniform translation. Inside the domaii®2 = [0, 3] x [0, 6], the initial square

S=[Xc — 0.25, X + 0.25] x [yc — 0.25, y¢ -+ 0.25] (45)

is located at(xc, Yc) = (0.75, 5.25). The uniform velocity vector iga, b) = (1, —3), so
that after a lapse of tim& = 1.5, the center of the square has moved to (2.25, 0.75). F
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y xy

FIG. 16. Translation (1—3) of SQUARE by modified Iserles schemes.

the runs in Fig. 16 and 17, the grid is made up of squares ohsizé.025. The CFL ratio
is 0.4.

Overthe bottom right corner square [1.5,3]0, 1.5], we record the output and proceed to
various 1-D cuts along four directions: horizontal, vertical, diagonal SW-NE, and diagor
SE-NW (perpendicular). The results are shown in the following pages. The reader shc
be aware of the fact that the numbers in the abscissa axis simply refer to sample tags,
do not represent an actual position.

First, in Fig. 16, we compare different interpolation methods for the modified Iserl
scheme. It is seen that linear interpolation is too diffusive. Cubic interpolation is slight
better than quadratic interpolation, but cannot always be afforded in view of the CPU tir
Note that in this experiment, singa, b) = (1, —3), the cubic interpolation turns out be
exact for some of the parent points.

Figure 16 also evidences the fact that we need at least one auxiliary point on e
edge. Otherwise, the simple-minded linear interpolation destroys everything! On the ot
hand, simulations of translation with other velocities suclilas-4) show that the cubic
interpolation (2 extra points per edge) does not bring about a tremendous improvem
Therefore, the quadratic interpolation (1 extra point per edge) appears to be good trade
between accuracy and computational cost.

Next, we compare the Iserles scheme with quadratic interpolation to the Donor and C
schemes that were previously described. This is depicted in Fig. 17. Obviously, the modi
Iserles scheme is closer to the exact solution.

Let us investigate now the respective orders of convergence. These are numerically
puted by logarithmic least-squares regression over the relatierors measured for the
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FIG. 17. Translation (1—3) of SQUARE on regular mesh.

mesh spacing range € {0.05, 0.025 0.0125. In Table I, which summarizes the study
of convergence for thél, —3)-translation experiment, the word “DON” stands for Donor,
while “ISE” denotes the modified Iserles scheme with quadratic interpolation (one ext
point per edge). Several remarks can be pointed out:

e Inaway thatis much more dramatic than the 1-D case (Table 1), the orders of con
gence of DON, CTU, and ISE are quite sensitive to the value of the CFL ratio. This rem:
applies especially to DON. The orders of DON and ISE decrease with the CFL, while t
of CTU increases with the CFL.

e The order of ISE is not always higher than that of CTU, except for theH¥HETAN.
Nevertheless, the magnitude of the relatieerror due to ISE is systematically much lower
than that due to CTU. For instance, in the middle panel of Fig. 18 that corresponds to
WAVELET data, the error associated to ISE with= 0.05 is about 10 times less than that

TABLE Il
Orders of Convergence for the 2-D Translation Experiment

SQUARE WAVELET HYPETAN

CFL DON CTU ISE DON CTU ISE DON CTU ISE

0.5 0.23 0.75 0.65 0.40 2.15 1.92 0.46 1.47 1.87
0.4 0.37 0.74 0.67 0.56 2.09 2.00 0.70 1.29 1.93
0.2 0.59 0.73 0.69 0.75 1.82 2.11 0.84 1.17 1.97
0.1 0.71 0.72 0.70 0.95 1.68 2.17 0.98 1.08 1.99
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FIG. 18. Convergence of various schemes on logarithmic scale for a 2-D advection experiment.

associated to CTU with the same space step. It is even less than the error due to CTU
h = 0.025, a space step twice smaller! This implies that for a fixed threshold of relati
L-error, it is possible to use the ISE method with a space step twice as big as that of
CTU method (at least for the range of space steps of practical use for applications)
that the auxiliary point on each edge in the ISE method does not penalize the comput

memory.

e For the very smooth dat@YPETAN, the ISE method does not achieve orders highe
than 2. This stems from the fact that we are using quadratic interpolation over each e
Had we used cubic interpolation (two auxiliary points per edge), the results would

better.
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FIG. 19. Final snapshots of the translation experiment forih€ELET data.

Another important aspect of the comparison among different 2-D schemes is h
“isotropic” they are. Indeed, some schemes may yield a small error, as well as a g
order of convergence, but may distort the solution in one direction. We have not devi
a quantitative study of anisotropy for the schemes. Instead, we have systematically loc
at the isolines on the snapshots of the solutions. With this visual scrutiny, the ISE sche
has always turned out to be the one that best preserves the shape of the initial data. £
example, Fig. 19 contains four snapshots representing the final solutions df, th®)-
translation experiment for theAVELET data. We see that DON is utterly uncompetitive,
while CTU is slightly dissymmetrical. Only ISE is close enough to the exact solution.

Circular vortex. At the center(Xc, o) = (0.75,0.75) of the square§ =0, 1.5] x
[0, 1.5], initial data are set. The velocity field is

ax,y) =—=2r(y—ye) and b(x,y)=2r(X - Xc), (46)

sothatafter at = 10, the initial data has made 10 turns. The results are displayed in Figs.
and 21 under the form of 1-D cuts. As before, we refer to the schemes as DON, CTU,
ISE. FOrSQUARE, the ISE scheme yields the least diffusive curves. AWMELET, it has

to be noticed that since the “origin” of the vortex is a sonic point which is not a source, t
value ofu at (X, Yc) remains constant in time, as was previously explained. This accour
for the seemingly “perfect” peak of the wavelet. Note that it does not make sense to perft
this vortex experiment for thBYPETAN data.
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FIG. 20. \Vortex of SQUARE over a regular mesh.

2.4.2. Deformed Meshes

Several kinds of irregular meshes have been tested. We will show the results for twe
them: a moderately deformed mesh, caltexpezoid meshand a highly deformed one,
calledKershaw mesh

HORIZONTAL DIAGONAL
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0.2

0.0

‘ : Regular mesh
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T T
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0.4+
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............ Donor 0.2
----CTU
Iserles 0.0
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00 025 05 075 10 1256 15 00 025 05 075 10 125 15

FIG. 21. Vortex of WAVELET over a regular mesh.
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FIG. 22. Trapezoid mesh.
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FIG. 23. Kershaw's mesh.
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The trapezoid mesh is depicted in Fig. 22. The Kershaw mesh, inspired from [26],
in Fig. 23. Both of them represent the domain= [0, 4.5] x [0, 4.5]. This domain is
discretized by 120« 180 cells. Most of these are rectangles, the smallest of which a
squares of size.025x 0.025.Inregions k< x <3.5and15 <y < 1.750r275<y < 3,
the cells are skewed trapezoids.

In order to move the initial data, supported®y= [0.5, 1] x [3.5, 4], toits final position
S =1[3.5,4] x [0.5, 1], we perform either the uniform translation of velocitg, b) =
(1, —1) or a rotation by a quarter of turn counterclockwise, the center of which is locat
at (Xo, Yo) = (3.75, 3.75). Intuitively, the initial data has to cross a “turbulence” zone, in
the middle of the mesh. Therefore, we want to measure the extent of “damages” cause
each method.

Again, in all runs, the CFL ratio is set to 0.4. We recall that the 1-D cuts that will b
shown to have been executed over the “arrival’ squ&r@ong the four main directions:
horizontal, vertical, first, and second diagonals. As for the scheme itself, it is the modifi
Iserles scheme with quadratic interpolation over the edges. Since the comments are
similar for SQUARE, WAVELET, andHYPETAN, we only show the results corresponding to the
first data, which is the most difficult case.

Trapezoid mesh. The results associated with the translation experiment are shown
Fig. 24. Those corresponding to the rotation experiment are in Fig. 25. The quality of 1
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0.0 0.0 \
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0.5 ] 3 05
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iy — lserle J \
0.0 < - — Exact | 00 <
T T T T T | T T | T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
y X-y

FIG. 24. Translation ofSQUARE on the trapezoid mesh.
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FIG. 25. Rotation ofSQUARE on the trapezoid mesh.
Horizontal Diagonal
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FIG. 26. Translation ofSQUARE on Kershaw’s mesh.
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Horizontal Diagonal
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FIG. 27. Rotation ofSQUARE on Kershaw’s mesh.

numerical results is not too bad. The comments are pretty similar to the case of reg
mesh.

Kershaw mesh. The results associated with the translation experiment are shown
Fig. 26. Those corresponding to the rotation experiment are in Fig. 27. The quality of
numerical results is much deteriorated on this very stiff example, but the comments
pretty similar to the case of regular mesh.

CONCLUSION

Our primary purpose was to look for genuinely multidimensional schemes for advecti
problems. We ended up with a “1-D” compact scheme by nature, since it has to be app
along the “appropriate” direction of the flowline. This answer is, ultimately, very nature
Unlike general conservation laws in multiple dimensions, advection is purely a “1-D” isst
at least locally.

In theory, the idea of the proposed scheme is quite simple. In practice, we need to in
duce several tricks: projection, proximity correction, and monotone interpolation at par
points. To our knowledge, this approach seems to be new. We insist on the fact that mod
Iserles schemes can be used over any kind of mesh, no matter of whether they are struct
unstructured, or hybrid. In this paper, we have explained the ideas of the scheme for st
tured mesh only because the notations and the computer implementations are much e

Because of the many tricks involved, the method may look rather complex at first sig
especially in multiple dimensions. In reality, the programming efort incurred is not :
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substantial as other methods, e.g., discontinuous Galerkin schemes. This claim ca
supported by a quick counting of the number of variables required in each method.

Further numerical experiments—not shown in this paper—demonstrate that, actually,
Iserles schemes over a coarse mesh are more accurate than traditional “cheaper” sct
over refined meshes (i.e., with an increased grid resolution). For instance, over a Carte
mesh withAx = Ay = h, the Iserles scheme with quadratic interpolation (one extra poi
per edge) is far more accurate than the CTU scheme over a Cartesian megkxwith
Ay = h/2. Over the samb-mesh, the Iserles scheme with cubic interpolation (two extr
points per edge) remains slightly better than the CTU scheme ¢v&-mesh. This feature
can prove to be very useful, since in practical applications, we mostly have to work w
imposed deformed meshes, which are not convenient to refine.

Over regular 2-D meshes, the actual number of computations can be optimized. In s
a case, the CPU times are in the ratio of akbu2 : 4 (DON, CTU, ISE). Over deformed
2-D meshes, computations are more expensive. The CPU times are now in the rati
1:3:5. It would be risky, and dishonest, for us to claim that the benefits of the new sche
outweigh other factors such as cost or programming complexity. As previously said,
initial objective was to search for an accurate as possible advection scheme, assuming
we are willing to pay the price. We are happy enough to have devised the modified Ise
schemes, because these are the best answer we could have expected. The reason v
discounted the discontinuous Galerkin method is not so much because it is expensive
because fundamentally it is not a genuinely multidimensional scheme: to evaluate the
across each edge, we have to consider local 1-D Riemann problems in the normal direc

The next step will be to extend these modified Iserles schemes to a 2-D time-depen
velocity fieldc(x, y, t). Then, the last step will be to generalize everything to 3-D meshe

APPENDIX

Assume a constant velocity fieddin 1-D. Let us proceed to show

THEOREMZ2.1. Ifthe firsttime step is the upwind schertien the schemeLC preserves
monotonicity. Similarlyif the first time step is the upwind scheme and if the second tin
step is ther 1C schemethen the scheme2C preserves monotonicity.

Proof. We prove only the first part of the claim, the proof of the second one beir
exactly similar. To fix ideas, assume tlgat- 0 and that the initial data’ is increasing, so
thatu? < u?,, for all i. After the first time step, which is a mere upwind scheme, we hav
u’ <ul, <uf,, foralli. Let us inspect the second time step.

If » < 2, we haveu? € [u?_,, ul| = [u?_,, u}] because of the projection step (6), hence

ut <l <u?<ul (47)

1 0 2 1
Ui = U = Uiy = Uiy, (48)
so that we can infer
w<ul <ud<u?,. (49)
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In other termsuy? is still increasing. Thanks to the intermediate inequalities in (49), we ca
go on by induction on the time step and the result follows.

If » > 1, we haveu? € ul_;, u? ;| = [ul ,,u’ ;] because of the projection step (6),
hence,

ub, <uf<ul g <ul (50)

The same inequality holds for the indiex 1, i.e.,

Uf = Ut S U S Uy, (51)
so that we can infer

U <ud g <ut<ufyy, (52)
and we can carry on by induction.
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