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1 et 4 avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France; and†Commissariat
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This paper is concerned with the numerical solution for linear scalar advection
problems, the velocity field of which may be uniform or a given function of the
space variable. We would like to propose the following: (1) a new family of 1-D
compact explicit schemes, which preserve monotonicity while maintaining high-
order accuracy in smooth regions; and (2) an extension to the 2-D case of this
family of schemes, which ensures good accuracy and isotropy of the computed
solution even for very distorted meshes. A few theoretical results are proven, while
abundant numerical tests are shown in order to illustrate the quality of the schemes at
issue. c© 2002 Elsevier Science (USA)

INTRODUCTION

The linear scalar advection equation is usually the starting point for students or research
scientists who work in the area of numerical schemes for hyperbolic conservation laws. In
the industrial context, it has a critical rˆole in fluid mechanics ALE codes such as KIVA
[1, 21]. Although many properties are known about this apparently simple topic, the “per-
fect” scheme for multidimensional advection remains yet to be discovered.

Let us examine the 1-D case. High-resolution upwind schemes based on nonlinear limiting
for the equation

ut + aux = 0 (1)

yield excellent results and have matured into a quite robust technological standard. The
reader is referred to several papers [2, 13, 37, 41] and review works [4, 16, 38]. However,
these schemes generally use a 5-point stencil, which makes it difficult to extend them
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to the 2-D case. Of course, dimensional splitting could be used, and actually it is rather
popular, but this is not we are looking for. Other types of schemes have been suggested for
the 1-D advection, for instance, ENO and UNO schemes [19, 20], box schemes [6, 36],
discontinuous Galerkin [7], and Iserles schemes [15, 23, 31]. All of these schemes are high
order but not necessarily TVD, unless some special treatments are applied.

The situation for the 2-D case is more complex. The advection equation reads

ut + aux + buy = 0, (2)

and what we are looking for is a “genuinely multidimensional scheme,” that is, a scheme
(i) which does not rely on dimensional splitting and (ii) which provides isotropic error
distributions. Such a quest is justified by the heavy use of advection steps on irregular
meshes in many industrial applications. In such contexts, one is led to the observation
that the grid’s orientation has a tremendous effect on the quality of the results. As for
dimensional splitting, although it remains “the method of choice” for many practioners, it
is not convenient for computations on unstructured grids.

The quest may have started when Colella [9] generalized the idea of Godunov’s scheme.
His scheme, called corner transport upwind (CTU), can be made second order using slope-
limitation. However, it does not always ensure high accuracy when the mesh is irregular.
An alternative philosophy for securing high order is advocated by Cockburnet al.[8, 7] via
discontinous Galerkin methods. Unfortunately, these methods turn out to be very expensive.
On the other hand, there exist more “compact” stencils, such as in N-schemes [30, 35] or
in residual distribution schemes [11, 12, 28]. Nevertheless, all of these schemes have been
mostly designed for the steady-state case and so are only of first order for evolution problems.

In this paper, we wish to indicate how 1-D Iserles schemes [23, 31] can be modified to
become monotonicity-preserving. Then, we derive a new way of extending these corrected
Iserles schemes to the 2-D case. The final product is a family of nonlinear compact stencils,
which leads to very satisfactory results for linear advection problems over space-dependent
velocity fields.

1. THE 1-D CASE

1.1. Uniform Velocity

Let us consider Eq. (1) in which the velocitya is assumed to be positive and uniform. The
initial condition isu(t = 0; x) = u0(x). The domainR is divided into intervals of length
1x. First, we concentrate on two Iserles schemes, namely,

(I1) un+1
i+1 = un−1

i + (1− 2λ)
(
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i+1− un
i

)
(3)
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i+1 = un−2
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(
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i+1− un−1
i

)+ (1− 3λ)(1− 2λ)

1+ λ
(
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)
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with λ = a1t/1x. Fourier analysis [31] shows that: (i) scheme(I1) is second order and
is stable for 0≤ λ ≤ 1; (ii) scheme(I2) is fourth order and is stable for 0≤ λ ≤ 1

2. The
schemes(I1) and(I2) are known to bedissipation-free. The price to be paid for such a
property is a huge amount ofdispersion.

There is a nice and useful way of interpreting formulae (3) and (4). In the(x, t)-plane
of Fig. 1, let us draw the characteristic linesC( j,m) associated with thestencil points
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FIG. 1. Iserles stencils.

s = ( j,m), where j ∈ {i, i + 1} is a space-like index andm ∈ {n− 2, n− 1, n, n+ 1} is
a time-like index. The intersection of these characteristic lines and the axist = n1t are
denoted by× = X( j,m). The×’s are referred to ascharacteristic points, whether or not
they coincide with some stencil points. Of course,u is constant along any characteristic line.
A special symbol? is attributed toX(i + 1, n+ 1), referred to asspot, since(i + 1, n+ 1)
is the point to be computed. Then, the value ofu at the spot? can be proven to be the
outcome of a polynomial interpolation process from the data available at the characteristic
points×. The interpolation is quadratic forI1 and quartic forI2. Insofar as the interpolation
process does not respect the maximum principle, we can hence understand the origin of
dispersion.

Screening out the oscillations is attempted by forcing the new value ofu at the spot not to
exceed those at the characteristic points× that are “closest” to the spot?. For instance, in
Fig. 1, the characteristic points that “enclose” the spot? are:X(i, n− 1) andX(i + 1, n)
for the left scheme(I1), andX(i, n− 2) and X(i + 1, n) for the right scheme(I2). To
better explain how the schemes can be made monotonicity-preserving, let us introduce some
more notations.

For two real numbersv andw, regardless of whetherv ≤ w or v > w, we designate by
|v,w| the closed interval [min(v,w),max(v,w)]. Thus,|v,w| = |w, v|. If u ∈ R, we call
5|v,w|(u) theprojectionof u onto|v,w|, namely,

5|v,w|(u) =


min(v,w) if u < min(v,w)
u if u ∈ |v,w|
max(v,w) if u > max(v,w).

(5)

Intuitively, we can understand the meaning of5 by mentally representing a continuous
functionx 7→ u(x). As shown in Fig. 2, if some valueh of u happens to lie outside interval
|v,w|, we just have to “pull it back.” Such a simple-minded limitation is motivated by our
desire to avoid creating any new local extremum. In practice, we proceed in two stages:
first, we apply the original Iserles formulae to update the grid point, and next, we resort to
the projection.
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FIG. 2. The idea of projection.

The heart of the matter is to decide on theu-interval over which projection must be
carried out right on. Thisu-interval is|u(Xl ), u(Xr )|, where [Xl , Xr ] is thebounding box
that encloses the spot?. In the upcoming figures, the bounding box [Xl , Xr ] is represented
by the rectangleX X . Although the formulae may look exceedingly complicated, the
underlying idea is very simple: always search for the characteristic lines which are closest
to the spot. This search, of course, will depend on the Courant numberλ.

More precisely, the projection process is described as follows:

• For(I1), as depicted in Fig. 3,
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If λ = 1
2, no projection is required, sinceun+1

i+1 = un−1
i according to (3).

• For(I2), as depicted in Fig. 4,
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Forλ = 1
3, no projection is required, sinceun+1

i+1 = un−2
i according to (4).

FIG. 3. Choice of the bounding box forI1.
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FIG. 4. Choice of the bounding box forI2.

The combination of the original schemes(I1) and(I2) and the projection process
(6) and (7) gives pretty good results, as will be shown in the next section. Unfortunately,
their quality worsens asλ gets closer to 0. The following observation accounts for this
phenomenon, mainly due to the interpolation process. In Fig. 5, it is easy to check that

• if λ < 1
3, then the characteristic point♦ = X(i + 1, n− 1) is closer to the spot? =

X(i + 1, n+ 1) thanY = X(i, n);
• if λ < 1

4, then the characteristic point♦ = X(i + 1, n− 2) is closer to the spot? =
X(i + 1, n+ 1) thanY = X(i, n).

Henceforth, whenλ < 1
3, it is more “interesting” to get♦ = X(i + 1, n− 1) involved in

the(I1) stencil. Thus, to retain an accurate quadratic interpolation,Y = X(i, n) has to be
left out. The rationale for this switch in the stencil is to always make use of the “closest”
points to the target for interpolating. The corresponding formula is

un+1
i+1 =

2λ2

1− λun−1
i + 2(1− 2λ)

1− λ un
i+1− (1− 2λ)un−1

i+1 . (8)

FIG. 5. Modified Iserles schemes for smallλ.
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Similarly, whenλ < 1
4, it is more “accurate” to get♦ = X(i + 1, n− 2) involved in the

(I2) stencil. Again, to keep an accurate quartic interpolation, the pointY = X(i, n) has to
be taken out, as has been previously explained and will be evidenced by numerical tests.
Thus,

un+1
i+1 = −

6λ2(1− 3λ)

1− λ2
un−1

i + 6λ2

1− λun−2
i + 3(1− 3λ)

1− λ un
i+1

− 3(1− 3λ)(1− 2λ)

1− λ un−1
i+1 +

(1− 2λ)(1− 3λ)

1+ λ un−2
i+1 . (9)

In summary, we propose two corrected schemes,

(I1C) = {interpolation (3) or (8)} + {projection (6)}
(I2C) = {interpolation (4) or (9)} + {projection (7)},

where the interpolation formula depends on the value ofλ as indicated above. Forλ = 1
3

in (I1C) andλ = 1
4 in (I2C), we keep the original stencils, i.e., (3) and (4). Although the

switch from (3) to (8) and from (4) to (9) is, in principle,discontinuouswith respect toλ, the
numerical results prove to be very acceptable. In what follows, (8) and (9) will be termed
proximity correctionfor the Iserles schemes. It is interesting to note—and easy to prove
(see Appendix A)—that both schemes(I1C) and(I2C) aremonotonicity-preserving.

To our knowledges, such ideas about (i) projection and (ii) modification of the Iserles
schemes have never been put forward. We shall see that these ideas are easily extendable
to the 2-D case.

1.2. Variable Velocity

It is relatively straightforward to upgrade the previous schemes to the case of a variable
velocity fielda(x). However, some basic hypotheses ona will be needed:

(H0) The velocity fielda is continuouswith respect tox. This hypothesis is necessary
for existence and uniqueness of the advection problem.

(H1) The values ofa are discretized at the nodesi of the grid.
(H2) Every, if any,sourcepoint of u, i.e., every abscissas for which u(s) = 0 together

with a(s− ε) < 0 anda(s+ ε) > 0 for small enoughε > 0, must coincide with a node.

Hypothesis (H2) may sound a little too constraining, but the physical explanation is that
additional data onu are required at any source point.

We are now in a position to describe our strategy for the variable velocity case. Ifai > 0
andai+1 > 0, we define an average velocity

a := ai+1/2 = 1

2
(ai + ai+1), (10)

and apply(I1C) or (I2C) with λ = a1t/1x, along with the appropriate projection step,
over the interval [i, i + 1] in order to computeun+1

i+1 . If ai < 0 andai+1 < 0, we exchange
i andi + 1 in the formulae (to take into account the direction of propagation) in order to
computeun+1

i .
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FIG. 6. The two types of sonic points for a continuous velocity field.

It could be thought that for a variable velocity field, more accuracy would be achieved
via an affine representation ofa. The characteristic curvesC( j,m) are no longer straight
lines. Hence, the position of characteristic pointsX( j,m)must be determined with a more
sophisticated procedure before any interpolation process is carried out. We will see from
numerical results that the gain in quality is not worth the extra price to be paid.

Furthermore, special attention must be devoted to the treatment of sonic nodes, i.e., any
nodei whereai = 0. Sinceai = 0, the linex = i1x is a characteristic curve. Additionally,
since the velocity fielda is assumed to be continuous, the other charactistic curves in the
neighborhood ofi do not cross the linex = i1x. Let us distinguish two cases:

• If the sonic pointi is a source (Fig. 6a), the value ofun+1
i must beimposed1 as data of

the problem. Then, we computeun+1
i+1 by using(I1C) or (I2C) with positive velocity over

[i, i + 1], andun+1
i−1 by using the negative-velocity version of the scheme over [i − 1, i ].

• If the sonic pointi is a sink (Fig. 6b), we naturally haveun+1
i = un

i . The value of
un+1

i+1 is updated by a modified Iserles scheme with negative velocity over [i + 1, i + 2],
whereas the value ofun+1

i−1 is updated by a modified Iserles scheme with positive velocity
over [i − 2, i − 1].

In both cases, the formulae are used with the average velocity over the interval at issue.
Note that, in this paper, only space-dependency ofa is considered. The case of a velocity
field a(x, t) which depends on space and time is currently under study.

1.3. Numerical Results

Let us start with a uniform velocity fielda = 1. The discontinuous dataSQUARE, defined
by

u0(x) =
{

1 if 0.5< x < 1
0 otherwise

(11)

is advected during a lapse of timeT = 3. The numerical solution, diplayed forx ∈ [3, 4.5],
is compared to the analytical solution, as well as to a numerical solution computed by a
classical MUSCL scheme [41] with the Ultrabee limitation procedure [13]. We recall that
Ultrabee makes use of the actual valueλ of the CFL ratio. Therefore, it is more compressive

1Although this may not be always possible in a “real-life” computation.
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FIG. 7. Advection ofSQUARE for largeλ, without proximity correction.

than Superbee. For the runs in Figs. 7–9, the mesh spacing is1x = 0.025. The first time
step is always performed with a standard upwind scheme using no reconstruction. As for
the second time step, it is always performed with(I1C).

In Fig. 7, we can see the results corresponding to four different values ofλ, ranging
from 0.2 to 0.5. Projections (6) and (7) are of course applied, but for the moment, there is
no proximity correction introduced in (8) and (9). The shape of the solution obtained with
(I1) is unsymmetric and, anyway, too diffusive. Obviously, only(I2) is able to compete
with MUSCL. Note that forλ = 0.5, the two Iserles schemes are exact.

In Fig. 8, the results are associated to smaller values ofλ, ranging from 0.05 to 0.3.
Although no new local extremum does appear, there is a staircase effect which looks “in-
aesthetical.” If the proximity correction is turned on, the results are much better as shown in
Fig. 9, especially for(I2C). This testifies, at least numerically, to the fact that the proximity
correction is a necessary step within the whole scheme. This correction will have a funda-
mental role in variable velocity simulations, where the local CFL may be very close to 0.

Let us quantify the orders of convergence by performing a logarithmic least-squares
regression on the relativeL1-errors, computed as functions of the mesh spacing1x = h
ranging through{0.05, 0.025, 0.0125, 0.00625}. For this convergence study, in addition to
theSQUARE data, we use two other types of initial data, namely,

• aWAVELET

u0(x) =
{

cos2[2π(x − 0.75)] if 0 .5< x < 1
0 otherwise,

(12)

which isC1-smooth (but notC2) and has a peak atx = 0.75; and
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FIG. 8. Advection ofSQUARE for smallλ, without proximity correction.

FIG. 9. Advection ofSQUARE for smallλ, with proximity correction.
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• aHYPETAN (standing for HYPErbolic TANgent)

u0(x) =


0.5
{

1+ tanh
[

x−0.75
0.25−4(x− 0.75)2

]}
if 0.5< x < 1

0 if x ≤ 0.5
1 otherwise,

(13)

which isC∞-smooth. Moreover, it is a monotone-increasing function.

In Fig. 10 and Table I, the word “MUSCL” designates the standard second-order upwind
scheme, the limitor being either Ultrabee (forSQUARE) or Van Leer (forWAVELET and
HYPETAN). At the right of each entry in Table I, the number in the parentheses corresponds
to the limitation-free high-order version of the schemes, i.e., the “LW” (Lax–Wendroff)

FIG. 10. Convergence of MUSCL and I2C schemes on a logarithmic scale for a 1-D advection experiment.
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TABLE I

Orders of Convergence for the 1-D Translation Experiment

SQUARE WAVELET HYPETAN

CFL MUSCL (LW) I2C (I2) MUSCL (LW) I2C (I2) MUSCL (LW) I2C (I2)

0.8 0.90 (0.74) N.A. 1.79 (1.73) N.A. 1.83 (1.87) N.A.
0.5 0.96 (0.68) N.A. 1.89 (1.66) N.A. 1.76 (1.80) N.A.
0.4 0.95 (0.67) 0.78 (0.50) 1.84 (1.66) 2.31 (2.35) 1.70 (1.79) 3.59 (3.72)
0.2 0.95 (0.64) 0.76 (0.47) 1.69 (1.67) 2.40 (2.24) 1.45 (1.75) 3.16 (3.36)
0.1 0.94 (0.65) 0.77 (0.42) 1.60 (1.70) 2.38 (2.23) 1.30 (1.72) 3.02 (3.17)

second-order scheme and the original fourth–order “I2” (Iserles). This number is supplied
simply in order to highlight the effect of the monotonizing mechanisms involved in various
schemes. In practical applications of interest for us, LW and I2 cannot be used because of
the spurious oscillations generated.

From Table I, we see that for the discontinuous dataSQUARE, I2C does not achieve a faster
convergence than MUSCL. However, the smoother the initial data, the more I2C outdoes
MUSCL, both in terms of order of convergence and magnitude of error. The reason why
theC1 dataWAVELET gives rise to orders of convergence lesser than 2.5 is the presence of
a local extremum. For theC∞ monotone increasing dataHYPETAN, I2C yields orders of
convergence close to 4.

We are now concerned with two variable velocity cases: anexpansionfielda(x) = x, and
a compressionfield a(x) = −x. We have just seen that(I2C)is much better than(I1C).
Therefore, we will concentrate on(I2C). In order to get a thorough insight of its behavior,
we will work with two types of initial data, namelySQUARE andWAVELET (see below). On
the other hand, we have implemented a variant called(I2C’), inwhich the velocitya is
represented by a locally affine function and the characteristic pointsX( j,m) are computed
accordingly.

For all the runs, the mesh spacing is1x = 0.025, while the time step1t is set so
thatλmax= |a|max1t/1x = 0.4, where|a|max= maxx|a(x)|. The computations were per-
formed for the three types of initial conditionSQUARE, WAVELET, andHYPETAN. For the
sake of concision, only the results associated toSQUARE are shown in this paper.

Figure 11a displays the results for the expansion case. The initial dataSQUARE,

u0(x) =
{

1 if 0.05< x < 0.15
0 otherwise

(14)

being transported over a lapseT = 3 along the characteristic curves

x(x0; t) = x0 exp(t) (15)

associated to the velocity fielda(x) = x, has been stretched by a factor of exp(3)≈ 20. The
display window is therefore [0, 4]. Comparison with the analytical solution and the MUSCL
(Ultrabee) scheme shows that there is no visible difference between(I2C) and(I2C’).
The overcompressive behavior of Ultrabee can be regarded as a slight disadvantage. On the
other hand, it can be noticed that, for all schemes, the numerical diffusion is much more
important invariable velocity than in uniform velocity.
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FIG. 11. Expansion and compression ofSQUARE by Iserles schemes with proximity correction.

Figure 11b exhibits the results for the compression case. The initialSQUARE,

u0(x) =
{

1 if −3< x < −1
0 otherwise

(16)

being transported over a lapseT = 3 along the characteristic curves

x(x0; t) = x0 exp(−t) (17)

associated to the velocity fielda(x) = −x, has been squeezed by a factor exp(−3) ≈ 0.05.
Consequently, the display window is now [−0.25, 0].

2. THE 2-D CASE

For the general 2-D advection equation

ut + a(x, y)ux + b(x, y)uy = 0, (18)



466 TRAN AND SCHEURER

it is usual to introduce the notion offlowline in the (x, y)-plane. A flowline is defined as
a curve whose tangent is parallel to velocity fieldc= (a, b). More accurately, it is the set
L(s0; x0, y0) of points(x(s), y(s)), parameterized bys, that are solution of the differential
system

dx

ds
= a

c
and

dy

ds
= b

c
(19)

along with the Cauchy conditionsx(s0) = x0 andy(s0) = y0. Here, the normalizing factor

c = ‖c‖ =
√

a2+ b2 (20)

is designed to makes the Euclidean curvilinear coordinate. One shall not confuse a flowline
with a bicharacteristic curve, which is defined in the space (x, y, t) as the setC(t0; x0, y0)

of points(x(t), y(t), t) such as its projection on the (x, y)-plane coincide with the flowline
L(t0, x0, y0).

Let σ be orthogonal coordinate associated tos the (x, y)-plane, as depicted in Fig. 12.
Intuitively, σ is a continuous “tag” that allows us to identify each of the flowlines in the
(x, y)-plane by an equation such asσ = constant. If the mapping(x, y)↔ (σ, τ ) is a local
diffeomorphism, then the couple (s, σ ) can be considered as a coordinate system, at least
locally, and we have

aux + buy = (asx + bsy)us + (aσx + bσy)uσ . (21)

This equality involves partial derivatives of the new coordinates (s, σ ) with respect to the
old coordinates (x, y). Notice, however, thataσx + bσy = c(σxxs + σyys) is a multiple of
the derivative ofσ along a flowline. Sinceσ remains constant along a flowline, we have
aσx + bσy = 0, which cancels out the second term on the right-hand side of (21). As for
the remaining term, we haveasx + bsy = c(xssx + yssy) = css = c, after (19).

FIG. 12. Local coordinates (s, σ ).
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The advection equation (18) can finally be expressed as

ut + c(s, σ )us = 0, (22)

whereu is to be thought of as a function of (t, s, σ ). Thus, we are somehow brought back to
the 1-D case. The main idea is therefore to apply the previously modified Iserles schemes
along the flowline. Below are the details.

2.1. Uniform Velocity

For sake of simplicity, let us first work with a uniform velocity field. The flowlines are
therefore straight lines. To further simplify the presentation, we assume that we are endowed
with a structured mesh, but this hypothesis does not restrict the validity of the method. In
Fig. 13, (i, j ) is the node to be updated. Let us draw the flowlineL going through (i, j )
and let us suppose thatL passes through the quadrilateral with nodes (i, j ), (i − 1, j ),
(i − 1, j − 1), and (i, j − 1). The cell which contains the backward flowline from node
(i, j ) is referred to as theinfluence cell.

LetR be the union of the two edges that do not contain (i, j ), and define

p(i, j ) = L ∩R (23)

to be theparentof (i, j ). We wish to apply the modified Iserles scheme(I2C) between
p(i, j ) and(i, j ). Of course, ifp(i, j ) happens to be one of the existing nodes, for instance
(i − 1, j − 1) as in Fig. 13a, there is no problem at all. The problem arises whenp(i, j )
is in a “general” position, as in Fig. 13b: how can we attribute a value foru to the parent
point?

Unsurprisingly, the answer is interpolation. At first sight, it seems natural to try a linear
interpolation to assessup(i, j ) from ui−1, j−1 andui, j−1. However, as will be shown later, the
results are hopelessly bad. We need higher order interpolation, while avoiding the use of
neighboring nodes, which would destroy the compacity of the scheme. The solution to such
a dilemma is to add extra unknowns defined atadditional pointsover each edge.

In Fig. 14a, we add one additional point per edge, which ensures a quadratic interpolation.
In Fig. 14b, we add two additional points by edge, which yields a cubic interpolation. At
these extra points×, the value ofu has to be stored and updated in the same way as the

FIG. 13. Basic idea of 2-D Iserles schemes.
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FIG. 14. Additional points for interpolation.

value ofu at a node: each point× has a parent point, and we need to apply(I2C) between
the parent and the point to be updated.

Note that the words “quadratic” and “cubic” describe the 1-D interpolation along the
edges, but do not suggest any 2-D interpolation over the cell. Of course, the more accurate
the interpolation, the more expansive the CPU time will be, since the number of points to
be updated grows quite fast. Our experience is that the quadratic interpolation, using just
one auxiliary point by edge, is a very acceptable trade-off.

It could be argued that, since the additional points along edges become extra unknowns
which must be updated in the same manner as the original vertex unknowns, the efective
stencil of the scheme increases and its compactness is therefore compromised. The point
we wish to make is that the stencil remains compact in space, insofar as the stencil points
all belong to the same cell. Of course, their number has increased in a manner not unlike
the larger stencils used by ENO or other reconstruction schemes. But compactness with
respect to space remains the key advantage: it makes it easier for us to work out high-order
approximation formulae, regardless of how much distorted the mesh may be (ENO or other
reconstruction schemes are uneasy to deal with over irregular meshes).

To help practitioners who would like to implement the full scheme, below are the inter-
polation formulae. Let us map the edge to interval [− 1

2,
1
2]. The midpoint of the edge is then

0, while the third and two-third points are at− 1
6 and 1

6. Letα ∈ [− 1
2,

1
2] be thenormalized

abscissaof a parent point.

• For linear interpolation, we are givenu−1/2 andu1/2. Then,

uα ≈ 1

2
(1− 2α)u−1/2+ 1

2
(1+ 2α)u1/2. (24)

• For quadratic interpolation, we are givenu−1/2, u0, andu1/2. Then,

uα ≈ −α(1− 2α)u−1/2+ (1− 4α2)u0+ α(1+ 2α)u1/2. (25)

• For cubic interpolation, we are givenu−1/2, u−1/6, u1/6, andu1/2. Then,

uα ≈ − 1

16
(1− 2α)(1− 36α2)u−1/2+ 9

16
(1− 4α2)(1− 6α)u−1/6

+ 9

16
(1− 4α2)(1+ 6α)u1/6− 1

16
(1+ 2α)(1− 36α2)u1/2. (26)
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Once interpolation is done, aprojection stephas to be followed, in order to preserve
monotonicity.2 Analogously to the projection in the Iserles scheme, the newly computed
value ofu has to be “controlled” by the values ofu at the closest points. For example, in
the case of Fig. 14a, we have to assign

up(i, j ) := 5|ui−1/2, j−1,ui, j−1|
(
up(i, j )

)
, (27)

where(i − 1/2, j − 1) denotes the extra point on the edge containingp(i, j ). In the case
of Fig. 14b, it is appropriate to request

up(i, j ) := 5|ui−1/3, j−1,ui, j−1|
(
up(i, j )

)
, (28)

where(i − 2/3, j − 1) and(i − 1/3, j − 1) are the extra points.
Figure 15 is a 3-D sketch that summarizes the whole idea of the scheme. Once interpo-

lation and projection steps are completed, the valueun+1
i, j is obtained by using the Iserles

scheme with proximity correction in the planeP.

2.2. Variable Velocity

As in the 1-D case, we first require thatc(x, y) is continuous. Furthermore, we need to
assume

(H3) The (vector) values ofc are given at the vertices (i, j ) of the mesh.
(H4) Every, if any,sourcepoint ofc, i.e., every postion (x, y) for whichc(x, y) = 0, and

µa(x + εµ, y+ εν)+ νb(x + εµ, y+ εν) > 0 for all unit vectorn = (µ, ν) and for all
ε > 0 small enough, coincide with a vertex.

For the same reasons explained in the previous section, the evolution ofu at a source point
has to be given as part of the data of the problem. At asonicpoint [c(x, y) = 0] that is not
a source, we are justified in writingun+1 = un.

Let us now explain how to update agenericpoint, i.e., either a grid point or an extra
point. We proceed in four stages:

1. Determine the influence cell of the point to be updated. Once this is found, compute
the average velocity over the cell.

2. Determine the parent of the point to be updated, using the average velocity to approx-
imate the flowline by a straight line.

3. Determine the value ofu at the parent point by interpolation and projection, as ex-
plained above.

4. Apply the 1-D Iserles scheme between the point to be updated and its parent.

Sincec does not depend ont , steps 1 and 2 can be done once and for all before entering the
time loop.

2.3. Reference Schemes

Our objective is to compare the new method to the second-order versions of: (i) the Donor
scheme, based on 1-D approximation of fluxes across edges; and (ii) Colella’s CTU scheme
that we extended to the case of irregular meshes. Let us briefly recall these two schemes.

2 Except for linear interpolation.
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FIG. 15. Modified Iserles scheme in 2-D with quadratic interpolation.



COMPACT SCHEMES FOR LINEAR SCALAR ADVECTION 471

Always for the sake of simplicity, we present them for structured grids. In both Donor
and CTU methods, the unknownsui, j are located at the centers of the cells. Consider the
quadrilateral cell

Qi, j =
{

Ni−1/2, j−1/2, Ni+1/2, j−1/2, Ni+1/2, j+1/2, Ni−1/2, j+1/2
}

(29)

at the mass-centerGi, j of which ui, j is defined. OverQi, j , u is seen as an affine function
of (x, y), i.e.,

ui, j (x, y) = ui, j + pi, j
(
x − xGi, j

)+ qi, j
(
y− yGi, j

)
. (30)

The way the gradient (pi, j ,qi, j ) is constructed and limited in order to achieve second-order
accuracy, while preserving monotonicity, will be explained later. The average value ofu
over Qi, j is exactlyui, j .

First, we put the advection equation (18) in theconservativeform, which yields

ut + (au)x + (bu)y = (ax + by)u. (31)

By the principle of finite-volume methods, we have

un+1
i, j = un

i, j −
1

A(Qi, j )

∫ 1t

0
dτ
∮
∂Qi, j

u?(`, τ )c(`) · n(`) d`

+ 1

A(Qi, j )

∫ 1t

0
dτ
∫

Qi, j

u div cdx dy, (32)

whereA denotes the area,∂ the boundary,n the outward normal unit vector,· the dot
product, andu? the “physical” solution along the edge, shifted in time. Since∂Qi, j consists
of four edges, we write∮

∂Qi, j

· · · =
∫ Ni+1/2, j+1/2

Ni+1/2, j−1/2

· · · +
∫ Ni−1/2, j+1/2

Ni+1/2, j+1/2

· · · +
∫ Ni−1/2, j−1/2

Ni−1/2, j−1/2

· · · +
∫ Ni+1/2, j−1/2

Ni−1/2, j−1/2

· · · (33)

The Donor and CTU schemes differ in how the elementary integrals on the right-hand side
are approximated.

2.3.1. Donor

In the Donor method, there is one velocityc for each edge. Thus, we have, for instance,∫ Ni+1/2, j+1/2

Ni+1/2, j−1/2

u?(`, τ )[c · n](`) d` = (ci+1/2, j · ni+1/2, j
) ∫ Ni+1/2, j+1/2

Ni+1/2, j−1/2

u?(`, τ )d`. (34)

Introduce the “apparent” velocityvi+1/2, j = ci+1/2, j · ni+1/2, j . Then, the “flux” termu?

is evaluated as

u?(`, τ ) =
{

un
i, j

(
M` − τvi+1/2, j ni+1/2, j

)
if vi+1/2, j ≥ 0

un
i+1, j

(
M` − τvi+1/2, j ni+1/2, j

)
if vi+1/2, j < 0,

(35)
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whereM` is the point whose abscissa alongNi+1/2, j−1/2Ni+1/2, j+1/2 is `. Of course, the
functionun

i, j is given by (30). In a nutshell, this amounts to the consideration that locally, at
the level of this edge, we have a 1-D avection problem governed by velocityvi+1/2, j . The
formulae for the other edges are similar. To this stage, the first term in the right-hand side
of (32) is available.

On the other hand, it is possible to assign a mean value for divc overQi, j using Green’s
formula. More precisely,

(div c)i, j = 1

A(Qi, j )

∑
e∈edges ofQi, j

ce · ne|e|. (36)

This allows us to discretize the second term in the right-hand side of (32) by1t (div c)i, j un
i, j

in order to obtain an explicit scheme. Note, however, that most of the velocity fields we
will be working with are divergence-free (divc= 0), so we do not have to worry about this
term.

2.3.2. CTU

In the CTU method, the velocity is given at the vertices of the cells. At each vertex, we
define a local Riemann problem as the advection associated to the local (constant) velocity
value. LetEi+1/2, j be the midpoint ofNi+1/2, j−1/2Ni+1/2, j+1/2. Then, we can write∫ Ni+1/2, j+1/2

Ni+1/2, j−1/2

u?(`, τ )[c · n](`) d` = [ci+1/2, j−1/2 · ni+1/2, j
] ∫ Ei+1/2, j

Ni+1/2, j−1/2

u?(`, τ )d`

+ [ci+1/2, j+1/2 · ni+1/2, j
] ∫ Ni+1/2, j+1/2

Ei+1/2, j

u?(`, τ )d`, (37)

while u? is defined as

u?(`, τ ) =
{

un
(
M` − τci+1/2, j−1/2

)
if ` ∈ [Ni+1/2, j−1/2Ei+1/2, j

]
un
(
M` − τci+1/2, j+1/2

)
if ` ∈ [Ei+1/2, j Ni+1/2, j+1/2

]
.

(38)

The pointM`−τc . . . may fall into a couple of cells around edgeNi+1/2, j−1/2Ni+1/2, j+1/2.
This is why we have not written down space indices as in (38). In practice, we have to deal
with various types of intersection between a segment and several half-lines originating from
each vertex. Over each cell,un is an affine function as specified in (30).

Under some geometrical CFL conditions, it is possible to compute exactly the integrals
involved in this method. The details are given in [39]. As for the term containing divc, it
can be coped with similarly to what was done for the Donor method.

2.3.3. Gradient Reconstruction

On non-Cartesian meshes, it is difficult to generalize 1-D slope limiters such as Van Leer
or Superbee. Inspired by Dukowicz and Kodis [14], we take the following approach. We
first compute a “candidate” gradient (pi, j ,qi, j ) by solving the least-squares minimization
problem

min
pi, j ,qi, j

∑
c∈neighbor cells

∣∣uGc −
〈
uGi, j + pi, j

(
xGc − xGi, j

)+ qi, j
(
yGc − yGi, j

)〉∣∣2. (39)
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We may take either four or eight neighboring cells. The solution is achieved by solving a
linear system.

Next, we search for the extremal values

u↓i, j = min
c∈neighbor cells

uGc et u↑i, j = max
c∈neigbor cells

uGc (40)

of u aroundQi, j . Compare these to the extremal values over cellQi, j , namely,

u−i, j = uGi, j + min
v∈vertices ofQi, j

pi, j
(
xv − xGi, j

)+ qi, j
(
yv − yGi, j

)
(41)

u+i, j = uGi, j + max
v∈vertices ofQi, j

pi, j
(
xv − xGi, j

)+ qi, j
(
yv − yGi, j

)
in order to define the ratios

σ−i, j = max

(
0,

u↓i, j − uGi, j

u−i, j − uGi, j

)
and σ+i, j = max

(
0,

u↑i, j − uGi, j

u+i, j − uGi, j

)
. (42)

Now, set

σi, j = min(1, σ+i, j , σ
−
i, j ), (43)

then change the candidate gradient as

pi, j := σi, j pi, j and qi, j := σi, j qi, j . (44)

This limitation procedure prevents new extremal values ofu from arising.

2.4. Numerical Results

Extensive numerical simulations have been carried out [39, 40] in order to test our method.
In this paper, we present six of them: two for a regular Cartesian mesh and four for two
deformed meshes. The initial data that will be used throughout the rest of the section are
the 2-D Cartesian products of their 1-D counterpartsSQUARE, WAVELET, andHYPETAN. The
first two of them are compact-supported and their initial support is denoted byS. As for
HYPETAN, it is not compact-supported, and its relevancy may be questionable in view of
practical applications. However, it is interesting to know whether or not this kind of data
still gives rise to a very high order of convergence. In most simulations, for the sake of
concision, we show the results corresponding toSQUARE alone. Unless otherwise stated,
the comments forWAVELET andHYPETAN are similar.

2.4.1. Regular Meshes

Uniform translation. Inside the domain̄Ä = [0, 3]× [0, 6], the initial square

S= [xc − 0.25, xc + 0.25]× [yc − 0.25, yc + 0.25] (45)

is located at(xc, yc) = (0.75, 5.25). The uniform velocity vector is(a, b) = (1,−3), so
that after a lapse of timeT = 1.5, the center of the square has moved to (2.25, 0.75). For
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FIG. 16. Translation (1,−3) of SQUARE by modified Iserles schemes.

the runs in Fig. 16 and 17, the grid is made up of squares of sizeh = 0.025. The CFL ratio
is 0.4.

Over the bottom right corner square [1.5, 3]× [0, 1.5], we record the output and proceed to
various 1-D cuts along four directions: horizontal, vertical, diagonal SW-NE, and diagonal
SE-NW (perpendicular). The results are shown in the following pages. The reader should
be aware of the fact that the numbers in the abscissa axis simply refer to sample tags, and
do not represent an actual position.

First, in Fig. 16, we compare different interpolation methods for the modified Iserles
scheme. It is seen that linear interpolation is too diffusive. Cubic interpolation is slightly
better than quadratic interpolation, but cannot always be afforded in view of the CPU time.
Note that in this experiment, since(a, b) = (1,−3), the cubic interpolation turns out be
exact for some of the parent points.

Figure 16 also evidences the fact that we need at least one auxiliary point on each
edge. Otherwise, the simple-minded linear interpolation destroys everything! On the other
hand, simulations of translation with other velocities such as(1,−4) show that the cubic
interpolation (2 extra points per edge) does not bring about a tremendous improvement.
Therefore, the quadratic interpolation (1 extra point per edge) appears to be good trade-off
between accuracy and computational cost.

Next, we compare the Iserles scheme with quadratic interpolation to the Donor and CTU
schemes that were previously described. This is depicted in Fig. 17. Obviously, the modified
Iserles scheme is closer to the exact solution.

Let us investigate now the respective orders of convergence. These are numerically com-
puted by logarithmic least-squares regression over the relativeL1-errors measured for the



COMPACT SCHEMES FOR LINEAR SCALAR ADVECTION 475

FIG. 17. Translation (1,−3) of SQUARE on regular mesh.

mesh spacing rangeh ∈ {0.05, 0.025, 0.0125}. In Table II, which summarizes the study
of convergence for the(1,−3)-translation experiment, the word “DON” stands for Donor,
while “ISE” denotes the modified Iserles scheme with quadratic interpolation (one extra-
point per edge). Several remarks can be pointed out:

• In a way that is much more dramatic than the 1-D case (Table I), the orders of conver-
gence of DON, CTU, and ISE are quite sensitive to the value of the CFL ratio. This remark
applies especially to DON. The orders of DON and ISE decrease with the CFL, while that
of CTU increases with the CFL.
• The order of ISE is not always higher than that of CTU, except for the dataHYPETAN.

Nevertheless, the magnitude of the relativeL1-error due to ISE is systematically much lower
than that due to CTU. For instance, in the middle panel of Fig. 18 that corresponds to the
WAVELET data, the error associated to ISE withh = 0.05 is about 10 times less than that

TABLE II

Orders of Convergence for the 2-D Translation Experiment

SQUARE WAVELET HYPETAN

CFL DON CTU ISE DON CTU ISE DON CTU ISE

0.5 0.23 0.75 0.65 0.40 2.15 1.92 0.46 1.47 1.87
0.4 0.37 0.74 0.67 0.56 2.09 2.00 0.70 1.29 1.93
0.2 0.59 0.73 0.69 0.75 1.82 2.11 0.84 1.17 1.97
0.1 0.71 0.72 0.70 0.95 1.68 2.17 0.98 1.08 1.99
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FIG. 18. Convergence of various schemes on logarithmic scale for a 2-D advection experiment.

associated to CTU with the same space step. It is even less than the error due to CTU with
h = 0.025, a space step twice smaller! This implies that for a fixed threshold of relative
L1-error, it is possible to use the ISE method with a space step twice as big as that of the
CTU method (at least for the range of space steps of practical use for applications), so
that the auxiliary point on each edge in the ISE method does not penalize the computer’s
memory.
• For the very smooth dataHYPETAN, the ISE method does not achieve orders higher

than 2. This stems from the fact that we are using quadratic interpolation over each edge.
Had we used cubic interpolation (two auxiliary points per edge), the results would be
better.
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FIG. 19. Final snapshots of the translation experiment for theWAVELET data.

Another important aspect of the comparison among different 2-D schemes is how
“isotropic” they are. Indeed, some schemes may yield a small error, as well as a good
order of convergence, but may distort the solution in one direction. We have not devised
a quantitative study of anisotropy for the schemes. Instead, we have systematically looked
at the isolines on the snapshots of the solutions. With this visual scrutiny, the ISE scheme
has always turned out to be the one that best preserves the shape of the initial data. As an
example, Fig. 19 contains four snapshots representing the final solutions of the(1,−3)-
translation experiment for theWAVELET data. We see that DON is utterly uncompetitive,
while CTU is slightly dissymmetrical. Only ISE is close enough to the exact solution.

Circular vortex. At the center(xc, yc) = (0.75, 0.75) of the squareǞ = [0, 1.5]×
[0, 1.5], initial data are set. The velocity field is

a(x, y) = −2π(y− yc) and b(x, y) = 2π(x − xc), (46)

so that after att = 10, the initial data has made 10 turns. The results are displayed in Figs. 20
and 21 under the form of 1-D cuts. As before, we refer to the schemes as DON, CTU, and
ISE. ForSQUARE, the ISE scheme yields the least diffusive curves. As forWAVELET, it has
to be noticed that since the “origin” of the vortex is a sonic point which is not a source, the
value ofu at (xc, yc) remains constant in time, as was previously explained. This accounts
for the seemingly “perfect” peak of the wavelet. Note that it does not make sense to perform
this vortex experiment for theHYPETAN data.
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FIG. 20. Vortex ofSQUARE over a regular mesh.

2.4.2. Deformed Meshes

Several kinds of irregular meshes have been tested. We will show the results for two of
them: a moderately deformed mesh, calledtrapezoid mesh, and a highly deformed one,
calledKershaw mesh.

FIG. 21. Vortex ofWAVELET over a regular mesh.
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FIG. 22. Trapezoid mesh.

FIG. 23. Kershaw’s mesh.
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The trapezoid mesh is depicted in Fig. 22. The Kershaw mesh, inspired from [26], is
in Fig. 23. Both of them represent the domain̄Ä = [0, 4.5]× [0, 4.5]. This domain is
discretized by 120× 180 cells. Most of these are rectangles, the smallest of which are
squares of size 0.025× 0.025. In regions 1≤ x ≤ 3.5 and 1.5≤ y ≤ 1.75 or 2.75≤ y ≤ 3,
the cells are skewed trapezoids.

In order to move the initial data, supported byS= [0.5, 1]× [3.5, 4], to its final position
S′ = [3.5, 4]× [0.5, 1], we perform either the uniform translation of velocity(a, b) =
(1,−1) or a rotation by a quarter of turn counterclockwise, the center of which is located
at (xo, yo) = (3.75, 3.75). Intuitively, the initial data has to cross a “turbulence” zone, in
the middle of the mesh. Therefore, we want to measure the extent of “damages” caused by
each method.

Again, in all runs, the CFL ratio is set to 0.4. We recall that the 1-D cuts that will be
shown to have been executed over the “arrival” squareS′ along the four main directions:
horizontal, vertical, first, and second diagonals. As for the scheme itself, it is the modified
Iserles scheme with quadratic interpolation over the edges. Since the comments are quite
similar forSQUARE, WAVELET, andHYPETAN, we only show the results corresponding to the
first data, which is the most difficult case.

Trapezoid mesh.The results associated with the translation experiment are shown in
Fig. 24. Those corresponding to the rotation experiment are in Fig. 25. The quality of the

FIG. 24. Translation ofSQUARE on the trapezoid mesh.
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FIG. 25. Rotation ofSQUARE on the trapezoid mesh.

FIG. 26. Translation ofSQUARE on Kershaw’s mesh.
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FIG. 27. Rotation ofSQUARE on Kershaw’s mesh.

numerical results is not too bad. The comments are pretty similar to the case of regular
mesh.

Kershaw mesh. The results associated with the translation experiment are shown in
Fig. 26. Those corresponding to the rotation experiment are in Fig. 27. The quality of the
numerical results is much deteriorated on this very stiff example, but the comments are
pretty similar to the case of regular mesh.

CONCLUSION

Our primary purpose was to look for genuinely multidimensional schemes for advection
problems. We ended up with a “1-D” compact scheme by nature, since it has to be applied
along the “appropriate” direction of the flowline. This answer is, ultimately, very natural.
Unlike general conservation laws in multiple dimensions, advection is purely a “1-D” issue,
at least locally.

In theory, the idea of the proposed scheme is quite simple. In practice, we need to intro-
duce several tricks: projection, proximity correction, and monotone interpolation at parent
points. To our knowledge, this approach seems to be new. We insist on the fact that modified
Iserles schemes can be used over any kind of mesh, no matter of whether they are structured,
unstructured, or hybrid. In this paper, we have explained the ideas of the scheme for struc-
tured mesh only because the notations and the computer implementations are much easier.

Because of the many tricks involved, the method may look rather complex at first sight,
especially in multiple dimensions. In reality, the programming efort incurred is not as
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substantial as other methods, e.g., discontinuous Galerkin schemes. This claim can be
supported by a quick counting of the number of variables required in each method.

Further numerical experiments—not shown in this paper—demonstrate that, actually, the
Iserles schemes over a coarse mesh are more accurate than traditional “cheaper” schemes
over refined meshes (i.e., with an increased grid resolution). For instance, over a Cartesian
mesh with1x = 1y = h, the Iserles scheme with quadratic interpolation (one extra point
per edge) is far more accurate than the CTU scheme over a Cartesian mesh with1x =
1y = h/2. Over the sameh-mesh, the Iserles scheme with cubic interpolation (two extra
points per edge) remains slightly better than the CTU scheme over ah/3-mesh. This feature
can prove to be very useful, since in practical applications, we mostly have to work with
imposed deformed meshes, which are not convenient to refine.

Over regular 2-D meshes, the actual number of computations can be optimized. In such
a case, the CPU times are in the ratio of about1 : 2 : 4(DON, CTU, ISE). Over deformed
2-D meshes, computations are more expensive. The CPU times are now in the ratio of
1 : 3 : 5. It would be risky, and dishonest, for us to claim that the benefits of the new scheme
outweigh other factors such as cost or programming complexity. As previously said, our
initial objective was to search for an accurate as possible advection scheme, assuming that
we are willing to pay the price. We are happy enough to have devised the modified Iserles
schemes, because these are the best answer we could have expected. The reason why we
discounted the discontinuous Galerkin method is not so much because it is expensive, but
because fundamentally it is not a genuinely multidimensional scheme: to evaluate the flux
across each edge, we have to consider local 1-D Riemann problems in the normal direction.

The next step will be to extend these modified Iserles schemes to a 2-D time-dependent
velocity fieldc(x, y, t). Then, the last step will be to generalize everything to 3-D meshes.

APPENDIX

Assume a constant velocity fielda in 1-D. Let us proceed to show

THEOREM2.1. If the first time step is the upwind scheme, then the schemeI1C preserves
monotonicity. Similarly, if the first time step is the upwind scheme and if the second time
step is theI1C scheme, then the schemeI2C preserves monotonicity.

Proof. We prove only the first part of the claim, the proof of the second one being
exactly similar. To fix ideas, assume thata > 0 and that the initial datau0 is increasing, so
thatu0

i ≤ u0
i+1 for all i . After the first time step, which is a mere upwind scheme, we have

u0
i ≤ u1

i+1 ≤ u0
i+1 for all i . Let us inspect the second time step.

If λ ≤ 1
2, we haveu2

i ∈ |u0
i−1, u

1
i | = [u0

i−1, u
1
i ] because of the projection step (6), hence,

u1
i−1 ≤ u0

i−1 ≤ u2
i ≤ u1

i . (47)

The same inequality holds for the indexi + 1, i.e.,

u1
i ≤ u0

i ≤ u2
i+1 ≤ u1

i+1, (48)

so that we can infer

u2
i ≤ u1

i ≤ u0
i ≤ u2

i+1. (49)



484 TRAN AND SCHEURER

In other terms,u2 is still increasing. Thanks to the intermediate inequalities in (49), we can
go on by induction on the time step and the result follows.

If λ > 1
2, we haveu2

i ∈ |u1
i−1, u

0
i−1| = [u1

i−1, u
0
i−1] because of the projection step (6),

hence,

u1
i−1 ≤ u2

i ≤ u0
i−1 ≤ u1

i . (50)

The same inequality holds for the indexi + 1, i.e.,

u1
i ≤ u2

i+1 ≤ u0
i ≤ u1

i+1, (51)

so that we can infer

u2
i ≤ u0

i−1 ≤ u1
i ≤ u2

i+1, (52)

and we can carry on by induction.
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